Sandbox

From Saltwiki

<accesscontrol>autor</accesscontrol>

This sandbox is used to test the function of the extensions and to give the authors examples of applications that can be copied for own purposes.

Autoren


Husen, Annika


Nicolai, Andreas


Heritage, Alison


Bläuer, Christine


Stadlbauer, Erwin


Wendler, Eberhand


Siedel, Heiner


Kirsten Linnow


Auras, Michael


Steiger, Michael


Mainusch, Nils


Riedl, Nicole


Laue, Steffen


Müller, Tim


Schwarz, Hans-Jürgen


Heritage, Adrian


Simon, Stefan

Extension:DynamicPageList (DPL), version 3.3.2: Warning: No results.


Niemeyer, Rolf


Stahlbuhk, Amelie


EmbedPDF

SVG

Error creating thumbnail: File missing
text


<svgcode width="300" height="200" version="1.1"> <svg version="1.1" id="Layer_1" xmlns="&ns_svg;" xmlns:xlink="&ns_xlink;" width="300" height="200" viewBox="0 0 300 350"> <rect x="0.5" y="0.5" fill="#FFFFFF" stroke="#000000" width="250" height="175"/> </svg> </svgcode>

OGG

[[image:Grand_canyon.ogg.ogv‎]]

File:Grand canyon.ogg.ogv

Gallery:


<gallery>image:Grand_canyon.ogg.ogv‎</gallery>


Bibliography

Die Zitierweise von Literaturhinweisen in SalzWiki geschieht wie folgt:



Bei nur einem Autor: [Larsen:1998]Title: Desalination of painted brick vaults: Ph.D.-thesis from The Technical University of Denmark, Department of Structural Engineering and Materials, October 1998
Author: Larsen, Poul Klenz
Link to Google Scholar

Bei mehreren Autoren: [test.etal:2001]The entry doesn't exist yet. [Cryspom_II:2010]The entry doesn't exist yet.

Transclusion

Articles will get the status "complete", if they are ready to publish in SaltWiki. The next status is "approved"

The order of categories, which should be followed by writing a new article:

  1. inProgress: article is being written or translated (by the author or authors)
  2. inReview: article is being reviewed by original author/s and/or invited reviewer (invitation by the editor)
  3. editing: article is being edited for English (Elena Charola))
  4. complete: article has been OK'd by original author and reviewer
  5. approved: by the editor (Elena Charola))

DynamcPageList

Es werden hier als Beispiel alle Seiten zur Kategorie inProgress aufgelistet.


Bildergalerie mit dpl vom Repositorium

Hier soll dargestellt werden, wie z.B eine Bildergallerie von Fotos aus dem Repositorium erzielt werden kann.

Extension:DynamicPageList (DPL), version 3.3.2: Warning: No parameter option supplied for ' '. (Missing '=')


Extension:DynamicPageList (DPL), version 3.3.2: Error: No selection criteria found! You must use at least one of the following parameters: category, namespace, titlematch, linksto, uses, createdby, modifiedby, lastmodifiedby, or their 'not' variants


Extension:DynamicPageList (DPL), version 3.3.2: Warning: No results.

CategoryTree

Der Kaztegorienbaum zur Kategorie "Nitrat".

Nitrat
no pages or subcategories


Terminology

Ein GLossareintarg auf der Seite "terminology" und wie er sich in SalzWiki darstellt:

FTP
File Transport Protocol

Template

Dieses feld ergibt sich alleine durchn die Eingabe des "Templates" (=Vorlage) {{GNU}}.


GNU

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.


Sandbox{{{Footnote}}}
{{{photo}}}
Mineralogical name {{{mineralogical_Name}}}
Chemical name {{{chemical_Name}}}
Trivial name {{{Trivial_Name}}}
Chemical formula {{{chemical_Formula}}}
Other forms {{{Hydratforms}}}
Crystal system {{{Crystal_System}}}
Crystal structure {{{Crystal_Structure}}}
Deliquescence humidity 20°C {{{Deliqueszenzhumidity}}}
Solubility (g/l) at 20°C {{{Solubility}}}
Density (g/cm³) {{{Density}}}
Molar volume {{{MolVolume}}}
Molar weight {{{Molweight}}}
Transparency {{{Transparency}}}
Cleavage {{{Cleavage}}}
Crystal habit {{{Crystal_Habit}}}
Twinning {{{Twinning}}}
Phase transition {{{Phase_Transition}}}
Chemical behavior {{{chemBehavior}}}
Comments {{{Comments}}}
Crystal Optics
Refractive Indices {{{Refractive_Indices}}}
Birefringence {{{Birefringence}}}
Optical Orientation {{{optical_Orientation}}}
Pleochroism {{{Pleochroism}}}
Dispersion {{{Dispersion}}}
Used Literature
{{{Literature}}}


Cite

Fussnoten

[1]

[2]


Quellen

[3]

[4]

Weblinks

Gleiche Fußnoten öfter!

[5]

[5]

[6]

[5]

 

Test LaTex

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \rho^{m_{w+v}} }{\partial t} &= - \nabla \left( j^{m_{w}} + j^{m_{v}}_{dif\!f} + j^{m_{v}}_{conv} \right) - \sigma_{w \rightarrow \text{ice}}}



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \rho^{m_{\text{ice}}} }{\partial t} &= \sigma_{w \rightarrow \text{ice}}}



Mathematische Formeln etc. werden in LaTex-Syntax eingegeben:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \cos\left(x\right)\, \sin\left(x\right) \,\mathrm{d} x = -\frac{\cos\left(2\, x\right)}{4}}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^N k^2 }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k\in M,\atop k>5} k }

Kopie von http://de.wikisource.org/wiki/Seite:Carl_Gottfried_Neumann_-_Die_elektrischen_Kräfte_134.jpg zur Kontrolle der TeX-Funktion


Setzt man (ebenso wie früher): Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos (\mathrm{D}s, \mathrm{D}s_1) = \Epsilon, \cos (\mathrm{D}s, r) = \Theta, \cos (\mathrm{D}s_1, r) = \Theta_1,\,} wobei die Richtung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\,} stets gerechnet sein soll im Sinne Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{D}s_1 \rightarrowtail \mathrm{D}s,\,} so ergiebt sich:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (11.)\,} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \Theta &= \mathfrak{ AU + BV + CW}, \\ \Theta_1 &= \mathfrak{A_1U + B_1V + C_1 W}, \\ \Epsilon &= \mathfrak{AA_1 + BB_1 + CC_1}; \end{align}\,}


und ferner:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (12.)\,} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} d\Theta &= \mathfrak{A}d\mathfrak{U + B} d \mathfrak{V + C} d \mathfrak{W}, \\ d\Theta_1 &= ( \mathfrak{A_1} d \mathfrak{U + B_1} d \mathfrak{V+ C_1} d \mathfrak{W} ) + ( \mathfrak{U} d \mathfrak{A_1+V} d \mathfrak{B_1 + W} d \mathfrak{C_1} ), \\ d\Epsilon &= \mathfrak{A}d\mathfrak{A_1 + B} d \mathfrak{B_1 + C} d \mathfrak{C_1}; \end{align}\,}


denn es ist zu beachten, dass Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{D}s\,} mit dem Axensysteme Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathfrak{x,y,z })\,} in starrer Verbindung steht, mithin Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\mathfrak{A}, d\mathfrak{B}, d\mathfrak{C}\,} Null sind.

Die relative Lage des Stromelementes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1\mathrm{D}s_1\,} in Bezug auf das Drahtelement Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{D}s\,} ist offenbar völlig bestimmt durch Angabe der vier Grössen Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r, \Theta, \Theta_1, \Epsilon.\,} Zufolge der Hypothese (1.) wird daher jene von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1\mathrm{D}s_1\,} während der Zeit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt\,} in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{D}s\,} hervorgebrachte elektromotorische Kraft Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{E}dt\,} proportional sein mit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{D}s_1,\,} sonst aber lediglich abhängen können von


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (13.) \,} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r, \Theta, \Theta_1, \Epsilon, J_1,\,}


sowie von denjenigen Aenderungen


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (14.)\,} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dr, d\Theta, d\Theta_1, d\Epsilon, dJ_1,\,}


welche diese Grössen erfahren während der Zeit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt.\,} Somit folgt:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{E}dt = \mathrm{D}s_1 \cdot F \ (r, dr, \Theta, d\Theta, \Theta_1, d\Theta_1, \Epsilon, d\Epsilon, J_1, dJ_1),\,}


wo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F\,} irgend welche Function der beistehenden Argumente vorstellt. Hieraus ergiebt sich durch Entwicklung nach den Grössen (14.) sofort:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{E}dt = \mathrm{D}s_1 \cdot (h + kdr + ld\Theta + md\Theta_1 + nd\Epsilon + OdJ_1),\,}


wo die Coefficienten Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h, k, l, m, n, O\,} nur noch abhängig sind von den Template:SperrSchrift Argumenten (13.). Nach der Hypothese (1.) verschwindet Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{E}dt,\,} sobald die Aenderungen (14.) sämmtlich Null sind; somit folgt Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h=0;\,} und es wird also:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{E}dt = \mathrm{D}s_1 \ (kdr + ld\Theta + md\Theta_1 + nd\Epsilon + OdJ_1) \,}


Nach der Hypothese (2.) ist Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{E}dt\,} eine Template:SperrSchrift Function von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1\,} und Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dJ_1.\,} Hieraus folgt, dass Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O\,} von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1\,} unabhängig ist, und dass Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k, l, m, n\,} proportional mit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1,\,} im Uebrigen aber ebenfalls von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_1\,} unabhängig sind. Somit ergiebt sich:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (15.a) \,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{E}dt =\mathrm{D}s_1 \cdot J_1 \ (Kdr + Ld\Theta + Md\Theta_1 + Nd\Epsilon) + \mathrm{D}s_1 (dJ_1) O,\,}


wo nun gegenwärtig die Coefficienten Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K, L, M, N, O\,} lediglich abhängen können von den Template:SperrSchrift Argumenten:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (15.b) \,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r, \Theta, \Theta_1, \Epsilon\,}

Bilder

texte


caption
heading heading
cell
Texte

Beschreibung von dem, was man so sieht

cell cell


Weblinks

Fußnoten


Literatur

Das Literaturverzeichnis am Ende eines Artikels generiert sich durch die Eingabe von <bibprint/>, dabei ist darauf zu achten, dass vorher mindestens eine Literaturstelle eingefügt wurde, da sonst das ganze Litersturverzeichniss abgebildet wird.

[Filter missing]