Desalination: Difference between revisions

From Saltwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<bibimport />  
<bibimport />  


<br>
Author: [[user:Hschwarz|Hans-Jürgen Schwarz]]
Author: [[user:Hschwarz|Hans-Jürgen Schwarz]]
<br>
<br>
Line 9: Line 8:
== Abstract  ==
== Abstract  ==


Increased salt contaminations can be reduced using different methods. These include poultice desalination, also in combination with other methods, the reduction of the salts using a water bath or methods aided by electric currents. When choosing the method, the protection of the object must always be the first priority. The measures should be accompanied by appropriate investigations to ensure their success.
If there is an increased salt load, the reduction of the salts is a method to deal with. Salt reduction measures include the possibilities of cpompress desalination, alone or in combination with other methods. Reducing the salt content of an object in a water bath as well as by electric current supported means are other options. When choosing the method the protection of the object has always the first priority. By appropriate investigations the success of a measure has to be ensured.


== Introduction==
== Introduction==


Desalination denotes the removal of salts and salt-forming ions out of the pore structure of porous materials such as natural stone (sandstones, limestones, tuffs, etc.), brick or terracotta and plaster or wall paintings. Treatments can be carried out in situ on the object, or on movable objects in the workshop.
Desalination is the removal of salts and salt-forming ions out of the pore structure of porous materials such as natural rocks (sandstones, limestones, tuffs, etc.), brick or terra cotta, plaster and wall paintings, in situ at the object or on moveable objects in the workshop.


The most commonly encountered salts are sulphates (Gypsum CaSO<sub><font size="1">4</font></sub><font size="1">•</font>2H<sub><font size="1">2</font></sub>O, Mirabilite (Thenardite) Na<sub><font size="1">2</font></sub>SO<font size="1">4</font>•10H<sub><font size="1">2</font></sub>O (Na<sub><font size="1">2</font></sub>SO<sub><font size="1">4</font></sub>), magnesium sulphate (MgSO<font size="1">4</font>•7H<sub><font size="1">2</font></sub>O u.a), chlorides (e.g. NaCl) und nitrates (Niter KNO<sub><font size="1">3</font></sub> u.a.). In individual cases, different salts can exist beside one another, and a variety of salt-forming ions can be in the pore solution.  
The most commonly encountered salts are sulphates (Gipsum CaSO<sub><font size="1">4</font></sub><font size="1">•</font>2H<sub><font size="1">2</font></sub>O, Mirabilite (Thenardite) Na<sub><font size="1">2</font></sub>SO<font size="1">4</font>•10H<sub><font size="1">2</font></sub>O (Na<sub><font size="1">2</font></sub>SO<sub><font size="1">4</font></sub>), magnesium sulphate (MgSO<font size="1">4</font>•7H<sub><font size="1">2</font></sub>O u.a), chlorides (NaCl u.a.) und nitrates (Nitrokalit KNO<sub><font size="1">3</font></sub> u.a.). In individual cases, differnet salts can exist side by side, and a variety of salt-forming ions in the pore solution.  


Salts can damage the fabric of porous materials and lead to powdering of the surface, sometimes causing substantial loss. The amount of decay and its appearance depend on the kind of crystallizing salts, the concentration of the salt solutions and the environmental conditions. Particularly damaging are climate fluctuations around the [[deliquescence|Deliquescence]] point of the salts. In addition, water-soluble salts have an influence on conservation measures such as consolidation, treatment with hydrophobic materials and painting or plastering, often making such action impossible. For these reasons, the reduction of the salt content is an indispensable prerequisite for the success and the durability of a conservation measure.
Salts are damaging the structure of porous materials and lead to dusting with sometimes great material loss. The amout of destruction and its appearence depend on the kind of crystallizing salts, the concentration of the salt solutions and the environment conditions. Particularly damaging are climate fluctuations around the[[deliquescence|Deliquescence Humidity]]point of the salts. In addition, water-soluble salts have an ingfluence on conservation measures such as strengthening, waterproofing, painting or plastering or make even such action impossible. For these reasons looking to the success and the durability of a measure the reduction of the salt content is an indispensable prerequisite.


The desalination/ salt reduction can be executed using several different methods <bib id="Sawdy.etal:2006" />. The use of plaster/ slurries on salt-contaminated objects <bib id="Auras:2008" /> is described [[Plaster/Slurries|elsewhere]].
The desalination/ salt reduction can be done in several ways <bib id="Sawdy.etal:2006" />. The use of plaster/ slurries with salt-contaminated objects <bib id="Auras:2008" /> is described [[Plaster/Slurries|elsewhere]].


== [[Water Bath Desalination]]  ==
== [[Water Bath Desalination]]  ==


This method is only practicable for objects that can be transported to a workshop, usually sculptures and objects that can be removed from their permanent location.<bib id=Franzen.etal:2008/>  
This method is practicable only for objects that can be transported to a workshop, usually for sculptures and objects that can be removed for a restoration.<bib id=Franzen.etal:2008/>  


The salt contaminated object is placed in a bath of cold or slightly warm water. In doing so the water can be desalinated and circulated to enhance the desalination process. An easier but less effective method is to exchange the water from time to time. The efficiency of the desalination is monitored by measuring the conductivity of the water bath.
The object contaminated with salts is placed in a bath of cold or slightly warm water. In doing so the water can be desalinated and circulated to enhance the desalination process. Easier but not so effective the water is exchanged from time to time. The efficiency of desalination is monitored by measuring the conductivity of the water bath.


Degree and speed of the desalination depends on the size of the object, the properties of the material (e. g. fine pores or coarsely porous stone), the type and amount of salts and salt-forming ions and their distribution in the pores. Salts concentrated near the surface are removed faster than those from deeper areas. The treatment of life- size figures can take between a few weeks to several months.
Degree and speed of desalination depends on the size of the object, the properties of the material(e.g. fine pores or coarsely porous stone), the type and amount of salts and salt-forming ions and their distribution in the pores. Salts concentrated near the surface are removed faster than those from deeper areas. Generally life-size figures need of application from several weeks to several months.


On suitable objects, desalination in a water bath has a good chance of success. Specific risk factors are:  
If the material is suitable, desalination in a water bath has a good chance of success. Specific risk factors are:  


*the saturation of the entire pore structure with water: risk for paint layers;  
*the total penetration of the entire pore structure with water, risk for the paint layers;  
*advanced degree of destruction: flaking of brittle surfaces;  
*advanced degree of destruction: flaking of the brittle surfaces;  
*salts with several hydrate phases: mineral hydration may be triggered, leading to an increase in the volume of the salt, which can cause a loss of substance to the object.
*salts with several hydrat phases: hydration may be triggered, leading to a loss of substance.


A pre-consolidation of brittle surfaces with a suitable strengthening agent, such as silicic acid esters may be possible. Due to this treatment the desalination can in some cases, be considerably delayed.
A pre-consolidation of brittle surfaces with suitable strengthening agents may be possible (for example: silicic acid esters). The desalination can be delayed in some cases considerably.


== [[Desalination Poultices]]  ==
== [[Desalination compresses]]  ==


Desalination using poultices relies on the principle that salts dissolved in water are transported  from the salt-contaminated, porous, mineral building materials into the poultice. The transport of salt solutions can take place both by proper motion and by movement of the fluid. The motion of a fluid is usually triggered by a moisture gradient (capillary) or by temperature, density and pressure gradients (convection).  
Desalination with compresses relies on the principle of solving salts in water and transport it from the salt-loaded, porous, mineral building materials into the compress. The transport of the salts in solution can take place both by their own movement as well as by the moving fluid. The motion of a fluid is usually troggered by a moisture gradient (capillary) or by temperature, density and pressure gradients (convection).  
<!--
<!--
Dagegen führen Konzentrationsgradienten zur Eigenbewegung der Salzionen (Diffusion). Der Kapillartransport (Advektion) wird durch das Porengefüge des Baustoffes bestimmt und kann in einfacher Weise durch den Wasseraufnahmekoeffizienten charakterisiert werden <bib id="Heritage.etal:2008"/>. Die Transportrichtung der Ionen verläuft entsprechend dem Feuchtegradienten vom feuchteren zum trockeneren Bereich. Die treibende Kraft für einen Ionentransport durch Diffusion ist ein Konzentrationsgefälle. Die Ionen diffundieren entsprechend dem Konzentrationsgradienten von der höheren zur niedrigeren Konzentration. Diffusion findet auch als Oberflächendiffusion an den Grenzflächen statt. Der konvektive Transport wird durch Druck-, Dichte- und Temperaturdifferenzen hervorgerufen und kann in einfacher Weise durch die Wasserdurchlässigkeit und andere Versuche überprüft werden. Dieser Transportprozess tritt bevorzugt in größeren Poren (<nowiki>></nowiki> 0,1 mm), Rissen und Hohlstellen auf.  
Dagegen führen Konzentrationsgradienten zur Eigenbewegung der Salzionen (Diffusion). Der Kapillartransport (Advektion) wird durch das Porengefüge des Baustoffes bestimmt und kann in einfacher Weise durch den Wasseraufnahmekoeffizienten charakterisiert werden <bib id="Heritage.etal:2008"/>. Die Transportrichtung der Ionen verläuft entsprechend dem Feuchtegradienten vom feuchteren zum trockeneren Bereich. Die treibende Kraft für einen Ionentransport durch Diffusion ist ein Konzentrationsgefälle. Die Ionen diffundieren entsprechend dem Konzentrationsgradienten von der höheren zur niedrigeren Konzentration. Diffusion findet auch als Oberflächendiffusion an den Grenzflächen statt. Der konvektive Transport wird durch Druck-, Dichte- und Temperaturdifferenzen hervorgerufen und kann in einfacher Weise durch die Wasserdurchlässigkeit und andere Versuche überprüft werden. Dieser Transportprozess tritt bevorzugt in größeren Poren (<nowiki>></nowiki> 0,1 mm), Rissen und Hohlstellen auf.  
Line 77: Line 76:
''Zweckmäßigkeit der Entsalzung''  
''Zweckmäßigkeit der Entsalzung''  


Es ist zu prüfen, ob eine Entsalzung überhaupt erfolgreich durchführbar ist. Erfolg verspricht eine Entsalzung nur dann, wenn die Salze hauptsächlich in der Oberflächenzone auftreten. Gleichmäßige Versalzungen von annähernd 1 Gew.% über die
Es ist zu prüfen, ob eine Entsalzung überhaupt erfolgreich durchführbar ist. Erfolg verspricht eine Entsalzung nur dann, wenn die Salze hauptsächlich in der Oberflächenzone auftreten. Gleichmäßige Versalzungen von annähernd 1 Gew.% über die gesamte Mauerwerksstärke, wie sie häufig bei Nitratversalzung auftreten, können nicht mit Aussicht auf Erfolg behandelt werden. Hier sind andere Lösungen, z. B. Nutzungsänderungen, anzustreben.  
gesamte Mauerwerksstärke, wie sie häufig bei Nitratversalzung auftreten, können nicht mit Aussicht auf Erfolg behandelt werden. Hier sind andere Lösungen, z. B. Nutzungsänderungen, anzustreben.  


''Schonung der Originalsubstanz''  
''Schonung der Originalsubstanz''  
Line 88: Line 86:
Geringere Konzentrationen von Salzen gefährden nicht den Erfolg von Konservierungsmaßnahmen. Entsalzungen können dann entfallen. Allerdings läßt sich nur ein materialspezifischer Grenzwertbereich einer Salzbelastung angeben, da Porosität, Porenradienverteilung und Klima eine entscheidende Rolle spielen. Hier ist im Einzelfall nach Gutachten zu entscheiden. Es ist bekannt, dass Salze in höheren Konzentrationen eine Festigung mit Kieselsäueester oder eine Hydrophobierung beeinträchtigen. Auch die Dauerhaftigkeit der Maßnahme wird stark eingeschränkt.
Geringere Konzentrationen von Salzen gefährden nicht den Erfolg von Konservierungsmaßnahmen. Entsalzungen können dann entfallen. Allerdings läßt sich nur ein materialspezifischer Grenzwertbereich einer Salzbelastung angeben, da Porosität, Porenradienverteilung und Klima eine entscheidende Rolle spielen. Hier ist im Einzelfall nach Gutachten zu entscheiden. Es ist bekannt, dass Salze in höheren Konzentrationen eine Festigung mit Kieselsäueester oder eine Hydrophobierung beeinträchtigen. Auch die Dauerhaftigkeit der Maßnahme wird stark eingeschränkt.
-->
-->
== Control measures==
== Success control==


For monitoring the success of the desalination, the salt content in stone, plaster or brick should be measured before and after the treatment.
The salt content in the stone, plaster or brick should be measured before and after the application to check the success of desalination.


There are only a few experiences on the desalination of entire buildings. Basically, a satisfactory desalination of any kind can only be expected, if the salts are concentrated near the surface at 1-2 cm depth. With both poultices and electrochemical methods the desalination will only reach a few centimeters into the materials.  
On desalination to buildings, there are a few experiences. Basically, one can expect a satisfactory desalination of any kind only if the salts are concentrated near the surface at 1-2 cm depth. Either with compresses or with electrochemical methods the desalination reaches only a few centimeters of the materials.  


Example: At "Nürnberger Tor" in Forchheim a NaCl contamination was successfully removed up to 90% with a bentonite / sand / cellulose poultice, which was applied twice to the splash zone of the structure. The success of the measure was due to the fact, that the salinization was confined to the uppermost centimeters.
Example: With a bentonite / sand / cellulose compress applied twice in the splash zone of the "Nürnberger Tor" in Forchheim a NaCl contamination was removed up to 90%. This was due to the fact, that the salinity was confined to the uppermost centimeters.


== Literature  ==
== Literature  ==

Revision as of 07:28, 5 October 2011

<bibimport />

Author: Hans-Jürgen Schwarz
back to Measures

Abstract

If there is an increased salt load, the reduction of the salts is a method to deal with. Salt reduction measures include the possibilities of cpompress desalination, alone or in combination with other methods. Reducing the salt content of an object in a water bath as well as by electric current supported means are other options. When choosing the method the protection of the object has always the first priority. By appropriate investigations the success of a measure has to be ensured.

Introduction

Desalination is the removal of salts and salt-forming ions out of the pore structure of porous materials such as natural rocks (sandstones, limestones, tuffs, etc.), brick or terra cotta, plaster and wall paintings, in situ at the object or on moveable objects in the workshop.

The most commonly encountered salts are sulphates (Gipsum CaSO42H2O, Mirabilite (Thenardite) Na2SO4•10H2O (Na2SO4), magnesium sulphate (MgSO4•7H2O u.a), chlorides (NaCl u.a.) und nitrates (Nitrokalit KNO3 u.a.). In individual cases, differnet salts can exist side by side, and a variety of salt-forming ions in the pore solution.

Salts are damaging the structure of porous materials and lead to dusting with sometimes great material loss. The amout of destruction and its appearence depend on the kind of crystallizing salts, the concentration of the salt solutions and the environment conditions. Particularly damaging are climate fluctuations around theDeliquescence Humiditypoint of the salts. In addition, water-soluble salts have an ingfluence on conservation measures such as strengthening, waterproofing, painting or plastering or make even such action impossible. For these reasons looking to the success and the durability of a measure the reduction of the salt content is an indispensable prerequisite.

The desalination/ salt reduction can be done in several ways [Sawdy.etal:2006]Title: Desalination—rubbing salt into the wound?
Author: Sawdy, Alison; Heritage, Adrian
Link to Google Scholar
. The use of plaster/ slurries with salt-contaminated objects [Auras:2008]Title: Poultices and mortars for salt contaminated masonry and stone objects
Author: Auras, Michael
Link to Google Scholar
is described elsewhere.

Water Bath Desalination

This method is practicable only for objects that can be transported to a workshop, usually for sculptures and objects that can be removed for a restoration.[Franzen.etal:2008]Title: Water bath desalination of sandstone objects
Author: Franzen, Christoph; Hoferick, Frank; Laue, Steffen; Siedel, Heiner
Link to Google Scholar

The object contaminated with salts is placed in a bath of cold or slightly warm water. In doing so the water can be desalinated and circulated to enhance the desalination process. Easier but not so effective the water is exchanged from time to time. The efficiency of desalination is monitored by measuring the conductivity of the water bath.

Degree and speed of desalination depends on the size of the object, the properties of the material(e.g. fine pores or coarsely porous stone), the type and amount of salts and salt-forming ions and their distribution in the pores. Salts concentrated near the surface are removed faster than those from deeper areas. Generally life-size figures need of application from several weeks to several months.

If the material is suitable, desalination in a water bath has a good chance of success. Specific risk factors are:

  • the total penetration of the entire pore structure with water, risk for the paint layers;
  • advanced degree of destruction: flaking of the brittle surfaces;
  • salts with several hydrat phases: hydration may be triggered, leading to a loss of substance.

A pre-consolidation of brittle surfaces with suitable strengthening agents may be possible (for example: silicic acid esters). The desalination can be delayed in some cases considerably.

Desalination compresses

Desalination with compresses relies on the principle of solving salts in water and transport it from the salt-loaded, porous, mineral building materials into the compress. The transport of the salts in solution can take place both by their own movement as well as by the moving fluid. The motion of a fluid is usually troggered by a moisture gradient (capillary) or by temperature, density and pressure gradients (convection).

Success control

The salt content in the stone, plaster or brick should be measured before and after the application to check the success of desalination.

On desalination to buildings, there are a few experiences. Basically, one can expect a satisfactory desalination of any kind only if the salts are concentrated near the surface at 1-2 cm depth. Either with compresses or with electrochemical methods the desalination reaches only a few centimeters of the materials.

Example: With a bentonite / sand / cellulose compress applied twice in the splash zone of the "Nürnberger Tor" in Forchheim a NaCl contamination was removed up to 90%. This was due to the fact, that the salinity was confined to the uppermost centimeters.

Literature

[Filter missing]