Deterioration Mechanisms: Difference between revisions

From Saltwiki
Jump to navigation Jump to search
Line 113: Line 113:
Beispielhaft lässt sich dies gut anhand des Systems [[Natriumsulfat]]-Wasser zeigen. Wird ein poröser Prüfkörper mit [[Thenardit]] im Porenraum bei Raumtemperatur getränkt, so bildet sich eine in Bezug auf [[Thenardit]] gesättigte Lösung. Ein Blick auf das Phasendiagramm des Systems zeigt jedoch, dass diese Lösung in Bezug auf [[Mirabilit]] übersättigt ist und der Grad der Übersättigung mit sinkender Temperatur zunimmt. Bei der Kristallisation von [[Mirabilit]] aus einer stark übersättigten Lösung können bei ausreichend gefüllten Poren hohe Drücke auf das Porengefüge wirken. Dies kann nicht nur bei der Flüssigwasserbefeuchtung beobachtet werden, sondern auch bei der Befeuchtung der wasserfreien bzw geringer hydratisierten Phase bei relativen Luftfeuchtigkeiten bis zur oder oberhalb der Deliqueszenzfeuchte, wobei die hydratisierte Phase dann aus dieser in Bezug auf sie übersättigten Lösung gebildet wird. Verallgemeinert ausgedrückt, kommt es durch das Auflösen einer metastabilen Phase zur Bildung einer in Hinblick auf die stabile Phase übersättigten Lösung, so dass während der Kristallisation der stabilen Phase hohe Drücke wirken können. <bib id="Steiger.etal:2008"/>
Beispielhaft lässt sich dies gut anhand des Systems [[Natriumsulfat]]-Wasser zeigen. Wird ein poröser Prüfkörper mit [[Thenardit]] im Porenraum bei Raumtemperatur getränkt, so bildet sich eine in Bezug auf [[Thenardit]] gesättigte Lösung. Ein Blick auf das Phasendiagramm des Systems zeigt jedoch, dass diese Lösung in Bezug auf [[Mirabilit]] übersättigt ist und der Grad der Übersättigung mit sinkender Temperatur zunimmt. Bei der Kristallisation von [[Mirabilit]] aus einer stark übersättigten Lösung können bei ausreichend gefüllten Poren hohe Drücke auf das Porengefüge wirken. Dies kann nicht nur bei der Flüssigwasserbefeuchtung beobachtet werden, sondern auch bei der Befeuchtung der wasserfreien bzw geringer hydratisierten Phase bei relativen Luftfeuchtigkeiten bis zur oder oberhalb der Deliqueszenzfeuchte, wobei die hydratisierte Phase dann aus dieser in Bezug auf sie übersättigten Lösung gebildet wird. Verallgemeinert ausgedrückt, kommt es durch das Auflösen einer metastabilen Phase zur Bildung einer in Hinblick auf die stabile Phase übersättigten Lösung, so dass während der Kristallisation der stabilen Phase hohe Drücke wirken können. <bib id="Steiger.etal:2008"/>


==Betrachtung von Kristallisationsdrücken unter Bauwerksbedingungen==
==Consideration of crystallization pressure within building deterioration==


Schädigungen von realen Bauwerken aus porösem Material, hervorgerufen durch Salzkristallisation, werden häufig beobachtet. Die Salze beziehungsweise Salzlösungen in den porösen Materialien stehen im direkten Austausch mit der Umgebung. Somit können Schwankungen der relativen Luftfeuchtigkeit zu zyklischen Wechseln zwischen Kristallisation und Auflösung führen, wenn die Schwankungen in Bereichen ober- und unterhalb der Deliqueszenzfeuchte erfolgen. Auch der Eintrag von Regenwasser oder das Auftreten von Kondensation kann zur Befeuchtung oder Hydratation von vorliegenden Salzen führen. Einige Salze können auch bei alleinigen Temperaturschwankungen Phasenwechsel durchlaufen, wenn in dem Salzsystem Phasen vorliegen, die nur in einem bestimmten Temperaturbereich stabil sind (beispielsweise [[Mirabilit]]). An Bauwerken liegen aber in den meisten Fällen geringere Konzentrationen und weniger drastische Bedingungen vor als in den im Labor für die Untersuchung der Schädigungsmechanismen durchgeführten Experimenten.
Schädigungen von realen Bauwerken aus porösem Material, hervorgerufen durch Salzkristallisation, werden häufig beobachtet. Die Salze beziehungsweise Salzlösungen in den porösen Materialien stehen im direkten Austausch mit der Umgebung. Somit können Schwankungen der relativen Luftfeuchtigkeit zu zyklischen Wechseln zwischen Kristallisation und Auflösung führen, wenn die Schwankungen in Bereichen ober- und unterhalb der Deliqueszenzfeuchte erfolgen. Auch der Eintrag von Regenwasser oder das Auftreten von Kondensation kann zur Befeuchtung oder Hydratation von vorliegenden Salzen führen. Einige Salze können auch bei alleinigen Temperaturschwankungen Phasenwechsel durchlaufen, wenn in dem Salzsystem Phasen vorliegen, die nur in einem bestimmten Temperaturbereich stabil sind (beispielsweise [[Mirabilit]]). An Bauwerken liegen aber in den meisten Fällen geringere Konzentrationen und weniger drastische Bedingungen vor als in den im Labor für die Untersuchung der Schädigungsmechanismen durchgeführten Experimenten.

Revision as of 17:35, 25 June 2019

Autoren: Amelie Stahlbuhk

zurück zu Salzwiki:Portal

Abstract[edit]

The different salt crystallization processes that can lead to deterioration of porous inorganic materials are discussed.


Introduction[edit]

Much of our cultural heritage is constituted by porous inorganic materials such as stone, brick, mortars and renders. Salts will enter these porous materials, e.g., from rising damp, and their crystallization in the pores will lead to their deterioration; a process that depends on the relative humidity (RH) and temperature. When the RH decreases, water from the salt solution will be released into the atmosphere until the deliquescence relative humidity (DRH) of the salt in question is reached. At this point, all the salt will be crystallized. If the RH increases, surpassing the DRH, the salt will absorb water vapor from the air and tend to form a saturated solution and, if the RH continues to increase, it will be further diluted. This shows that changes in RH around the DRH of the salt will lead to alternating crystallization and deliquescence cycles. This changes are responsible for the deterioration induced by these cycles that can be attributed to crystallization pressure; repeated cycling inducing more damage. One of the critical factors in developing an effective crystallization pressure is the formation of a supersaturated solution [Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar
. Crystallization from a supersaturated solution will not occur when reaching the saturation concentration or temperature, where a saturated solution should be formed, but at a lower RH or temperature. Supersaturated solutions form through water vapor evaporation, if for example, the RH drops, or by lowering temperature (note did not include oder nach Flüssigwassereintrag because it does not make sense to me). Dissolution of a metastable phase can result in a supersaturated solution, which will be discussed a following section [Steiger.etal:2008]Title: Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress
Author: Steiger, Michael; Asmussen, Sönke
Link to Google Scholar
.

Whether the presence of salts will result in a deterioration process depends on the nature of the salt, or saltmixture, and its properties, but mainly by the environmental condition including the amount of water vapor available. These mechanisms, based on theoretical models, are only applicable for porous inorganic materials.

Crystallization within a pore[edit]

The concentration of a salt solution within a pore will depend on environmental factors such as relative humidity (RH) and temperature (T). In the RH drops, the concentration will increase as water vapor will be released from the solution; if the amount evaporated is such that the solubility of the salt in question is attained, then crystallization of the salt will occur. This RH is known as the deliquescence RH (DRH). Capillary transportation of the solution to the material's surface, where the main evaporation occurs, will increase the evaporation rate. As drying continues, the evaporation front will move into the interior of the porous material, as the evaporated moisture will move faster than the capillary movement to the evaporation front [Hall.etal:1984]The entry doesn't exist yet.. Therefore, salts transported by the solution can crystallize both on the material's surface, i.e., efflorescence, as well as in the area below the surface as a subflorescence. Where crystallization will actually occur depends on the drying conditions, the composition of the salt solution in question, its concentration and the material's properties [Espinosa-Marzal.etal:2010]Title: Advances in Understanding Damage by Salt Crystallization
Author: Espinosa-Marzal, Rosa M.; Scherer, George W.
Link to Google Scholar
.

Historical Background[edit]

Currently, our understanding of the models to explain the deterioration of porous materials and crystallization pressure from salts resulted in some controversial discussions since the 20th century. The growth of a crystal in the presence of obstacles was understood as a linear crystallization pressure (u.a. [Becker.etal:1916]Title: Notes on the Linear Force of Growing Crystals
Author: Becker, G.F.; Day, A.L.
Link to Google Scholar
, [Taber:1916]Title: The Growth of Crystals under External Pressure
Author: Taber, Stephen
Link to Google Scholar
, [Correns.etal:1939]Title: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Author: Correns, Carl W.; Steinborn, W.
Link to Google Scholar
, [Duttlinger.etal:1993]Title: Salzkristallisation und Salzschadensmechanismen
Author: Duttlinger, Werner; Knöfel, Dietbert
Link to Google Scholar
). A growing crystal, when it crystallizes from a supersaturated solution, can generate a maximum pressure when it grows along a crystal surface and reaches an obstacle. A film solution should be present between the crystal surface and the obstacle to allow its ongoing growth [Taber:1916]Title: The Growth of Crystals under External Pressure
Author: Taber, Stephen
Link to Google Scholar
. Important studies have been carried out by [Correns:1926]Title: Über die Erklärung der sogenannten Kristallisationskraft
Author: Correns, Carl W.
Link to Google Scholar
, who classified the crystallization pressure as a function of the volume increase of the crystal (hydrostatic crystallization pressure), hydration pressure as well as those referred to as linear crystallization pressure.

However, others ([Taber:1916]Title: The Growth of Crystals under External Pressure
Author: Taber, Stephen
Link to Google Scholar
), pointed out the influence of the interfacial energy that should have a given value so that the crystallization could take place. He pointed out that a growing crystal is not attached to the surface, there being a solution film between it and the surface, to allow for an ion exchange to take place, and that can be attributed to the inter-facial energy between crystal and pore-wall ([Correns:1926]Title: Über die Erklärung der sogenannten Kristallisationskraft
Author: Correns, Carl W.
Link to Google Scholar
, [Bruhns.etal:1913]Title: Über die sogenannte "Kristallisationskraft"
Author: Bruhns, W.; Mecklenburg, W.
Link to Google Scholar
, [Weyl:1959]Title: Pressure Solution and the Force of Crystallisation - A Phenomenological Theory
Author: Weyl, Peter K.
Link to Google Scholar
.

Some experiments, where both a loaded and an unloaded alum crystal in a saturated solution, showed that only the unloaded crystal grew thus requiring a re-examination of the linear crystallization pressure, and that furthermore the pressure developed could be correlated better with a volume increase rather than the pressure of the crystal. This could also be applied to the hydration pressure, since an anhydrous or a low hydrated phase would have a smaller volume than the fully hydrated one ([Bruhns.etal:1913]Title: Über die sogenannte "Kristallisationskraft"
Author: Bruhns, W.; Mecklenburg, W.
Link to Google Scholar
). The hydrostatic pressure is given by the increased volume resulting from the crystallization of the salt, since the volume of salt and saturated solution is greater than that of the supersaturated solution. Relevant contributions regarding the hydration pressure can be found [Mortensen:1933]Title: Die 'Salzprengung' und ihre Bedeutung für die regionalklimatische Gliederung der Wüsten
Author: Mortensen, Hans
Link to Google Scholar
, who found that the hydration pressure of an unhydrous crystal could be calculated as follows;

Δphydr=(ΔnRTVm)∙ln(RH/RHeq) (Eq.1)

where Δn is the difference in water molecules per moles of salt of the lower hydrate n1 with the higher hydrate n2; ΔVm is the difference between the molar volume of both phases; RH the relative humidity at which the hydration reaction occurs, and RHeq the equilbrium moisture at the temperature T corresponding to the hydration-dehydration equilibriumt. The hydration pressure corresponds to the maximum developed pressure that a growing crystal of the higher hydration can exert on the pore wall, since at a higher pressure, dehydration would result [Mortensen:1933]Title: Die 'Salzprengung' und ihre Bedeutung für die regionalklimatische Gliederung der Wüsten
Author: Mortensen, Hans
Link to Google Scholar
, [Steiger.etal:2014]Title: Weathering and Deterioration
Author: Steiger, Michael; Charola A. Elena; Sterflinger, Katja
Link to Google Scholar
.

Both Correns and Steinborn ([Correns.etal:1939]Title: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Author: Correns, Carl W.; Steinborn, W.
Link to Google Scholar
) also studied the "crystallization pressure". For the case of the "linear growth pressure" they gave a formula for the chemical potentials for which the degree of supersaturation of the solution defined the intensity of the developed pressure, as follows:

p=(RT/Vm)∙lnS=(RT/Vm)∙ln(c/c0) (Eq. 2)

where ∆p is the crystallization pressure; R the gas constant; T the temperature; Vm the molecular volume of the salt; S the supersaturation; c the concentration of the supersaturated solution, and c0 the concentration of the saturated solution.

Since their various experiments using different crystal surfaces always produced lower values than the theoretical ones, they attributed this to the different inter-facial energies. In subsequent equations, the crystallization pressure was also given as a function of the supersaturation, which allowed different ways of expressing them (e.g., [Goranson:1940]The entry doesn't exist yet., [Buil:1983]Title: Thermodynamics and Experimental Study of the Crystallization Pressure of Water Soluble Salts
Author: Buil, Michel
Link to Google Scholar
).

Everett ([Everett:1961]Title: The thermodynamics of frost damage to porous solids
Author: Everett, D.H.
Link to Google Scholar
considered the crystalization of ice and suggested a theory through which the crystallization pressure was the consequence of stability differences of the larger crystals. These stability differences result from differences in curvature of the interface between the solid and the liquid phases, which lead to different chemical potential for crystals with different sizes. However, he did not consider the supersaturation, his equation:

p=γcl∙(dA/dV) (Eq. 3)

describes the pressure differences between two crystals of different size; where γcl is the interfacial energy between the solid and the liquid phase, A is the surface, and V is the volume. For spherical crystals this can be rewritten

p=2γcl∙[(1/r1)-(1/r2)] (Eq. 4)

The pressure that develops through crystal growth in the larger pores with the radius r2 is appropriate, since crystal growth in the smaller pores is not thermodynamically favored. The crystal developing in larger pores will grow as long as the chemical potential of the crystal corresponds to that of a crystal in the smaller pore r1 ([Everett:1961]Title: The thermodynamics of frost damage to porous solids
Author: Everett, D.H.
Link to Google Scholar
, [Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar
).

The two approaches of Correns and Everett were considered contradictory deterioration mechanisms for many years, since one considered supersaturation and the other the crystal curvature as responsible for the crystallization pressure developed. Both approaches were followed in parallel, and that of Correns was criticized by its very high supersaturation. In the case of the Everett theory, because data for the reliable pore sizes were available, which is not the case for the supesaturation [Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar
.

Crystallization Pressure[edit]

Eine Schädigung von porösem Material durch Salzkristallisation kann nur auftreten, wenn es sich um einen eingeschlossenen Kristall handelt, der aus einer übersättigten Lösung gegen ein Hindernis wächst (z.B. [Correns.etal:1939]Title: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Author: Correns, Carl W.; Steinborn, W.
Link to Google Scholar
). Dieses Hindernis wird im Falle von porösen Materialien durch die Porenwände dargestellt. Da der Kristall gegen diesen Druck weiterwächst, wird eine mechanische Belastung in Form einer Zugspannung auf das Material ausgeübt. Eine weitere Bedingung für das Kristallwachstum gegen die Porenwand ist das Vorhandensein eines dünnen Lösungsfilms [Weyl:1959]Title: Pressure Solution and the Force of Crystallisation - A Phenomenological Theory
Author: Weyl, Peter K.
Link to Google Scholar
(etwa 1 nm Dicke [Scherer:1999]Title: Crystallization in pores
Author: Scherer, George W.
Link to Google Scholar
) zwischen dem wachsenden Kristall und der Porenwand, durch welchen der Ionentransport erfolgt. Grund für das Vorliegen des Films sind Abstoßungskräfte zwischen Kristall und Porenwand. Ohne das Vorliegen dieses Films würde ein Wachstum gegen die Porenwände aufgrund der Abstoßung nicht erfolgen können [Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar
. In Versuchen, bei denen die Kraft, die ein zwischen zwei Glasplatten eingeengter Kristall ausübt, betrachtet wurde, konnte das Vorliegen des Films visuell belegt und seine Relevanz gezeigt werden [Desarnaud.etal:2016]The entry doesn't exist yet.. Der Abstoßungsdruck zwischen den beiden Komponenten stellt den maximalen Kristallisationsdruck dar, da es bei seiner Überschreitung zum direkten Kontakt zwischen Kristall und Wand kommt, wodurch das Kristallwachstum stoppt. Da der Abstoßungsdruck auch geringfügig von der Benetzbarkeit und Eigenschaften bezüglich der Oberflächenladung abhängig ist, können sich für die Kristallisation verschiedener Salze in variierenden Materialen Unterschiede ergeben [Desarnaud.etal:2016]The entry doesn't exist yet..

Ein in einer Pore wachsender Kristall ist einem anisotropen Druck ausgesetzt. An seinen freien Flächen, die nicht gegen die Porenwand wachsen sondern mit der Porenlösung in Kontakt stehen, wirkt der hydrostatische Druck der Lösung. Hingegen wirkt an den belasteten Flächen des wachsenden Kristalls, die zur Porenwand gerichtet sind, ein erhöhter Druck. Die Differenz dieser Drücke ist der Kristallisationsdruck. Da die Löslichkeit von Kristallen eine Druckabhängigkeit aufweist und diese mit zunehmendem Druck ansteigt, weisen die freien und die belasteten Flächen des Kristalls unterschiedliche Löslichkeiten auf. Beispielsweise bedeutet das, dass eine in Bezug auf die belastete Fläche gesättigte Lösung in Bezug auf die freie Fläche bereits übersättigt ist. [Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar
Die Gleichung für den Kristallisationsdruck kann wie folgt angegeben werden:

p=(RT/Vm)∙ln(a/a0) (Gl. 5).

Dabei ist ∆p der Kristallisationsdruck oder auch die Differenz zwischen dem Druck, der an der belasteten Kristallfläche unter dem Druck pc wirkt und dem hydrostatischen Druck pl, dem die freien Flächen ausgesetzt sind; a die Aktivität der übersättigten Lösung und a0 die Aktivität der gesättigten Lösung. Durch die Verwendung von Aktivitäten wird das nicht-ideale Verhalten von Salzlösungen berücksichtigt.[Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar

Diese Gleichung weist zunächst eine große Ähnlichkeit zu der von Correns und Steinborn angegebenen Gleichung ([Correns.etal:1939]Title: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Author: Correns, Carl W.; Steinborn, W.
Link to Google Scholar
) auf, jedoch wird im Gegensatz zu ihrer Gleichung das nicht-ideale Verhalten von Salzlösungen durch die Verwendung von Aktivitäten anstelle von Konzentrationen berücksichtigt. Zudem vernachlässigte Correns das Vorhandensein eines anisotropen Drucks, dem der Kristall ausgesetzt ist.

Ein Druck wird nur dann auf das Porengefüge ausgeübt, wenn der Kristall mit einer in Bezug auf die freie Fläche übersättigten Lösung in Kontakt steht. Da die Übersättigung aber durch das Kristallwachstum an der freien Fläche abgebaut wird (sofern freie Flächen zur Verfügung stehen), sinkt die Übersättigung und der Druck an der belasteten Fläche kann nicht stetig aufrechterhalten werden. Da die ausgehende Lösung in Bezug auf die belastete Fläche gesättigt war, wird sie durch die dann abnehmende Lösungskonzentration in Bezug auf diesen Bereich untersättigt. In diesem Zuge löst sich der Kristall an der belasteten Fläche also auf und bewirkt damit einen abnehmenden Druck, damit das Gleichgewicht mit dem Lösungsfilm wiederhergestellt wird. Diese beiden Einflüsse führen dazu, dass hohe Kristallisationsdrücke nur kurzzeitig beim Vorliegen hoher Übersättigungen wirken können. Somit handelt es sich bei dem Druckaufbau durch Salzkristallisation nicht um einen Gleichgewichtszustand. Es ist unter den angegebenen Bedingungen ein kinetischer, dynamischer Prozess, der Einflüssen wie Diffusions- und Wachstumsrate und verfügbaren freien Kristallflächen unterliegt ([Steiger:2009]Title: Mechanismus der Schädigung durch Salzkristallisation
Author: Steiger, Michael
Link to Google Scholar
, [Scherer:2004]Title: Stress from crystallization of salt
Author: Scherer, George W.
Link to Google Scholar
.

Expansion[edit]

Wird ein Salz gelöst, so folgt die Lösungsreaktion der folgenden Gleichung:

MνMXνXν0H2O⇌νMMzM++νXXzX-+ν0 H2O (Gl. 6)

Es sind M die Kationen, X die Anionen, ν die Anzahl der entsprechenden Ionen M und X, z die Ladung des entsprechenden Ions und ν0 die Anzahl der Wassermoleküle.

Die Aktivität des gelösten Salzes ist a=aMνMaXνXawν0, das Ionenaktivitätsprodukt. Hierbei ist aw die Wasseraktivität.

Wird die Aktivität in Form der Aktivitätskoeffizienten und Molalitäten ausgedrückt ai=γi∙(mi/m0), wo ai die Aktivität des Ions, γi der Aktivitätskoeffizient des Ions, mi die Molalität des Ions in der Lösung und m0=1 mol/kg sind, so kann der Kristallisationsdruck eines Kristalls in Kontakt mit jeder beliebigen Lösung berechnet werden, sofern die Aktivitätskoeffizienten und Wasseraktivitäten bekannt sind.

Es ergibt sich dann eine weitaus ausführlichere Gleichung für Δp. Im Falle von Einzelsalzen lässt sie sich aber durch die Einführung eines mittleren Aktivitätskoeffizienten γ±=(γMνMγXνX)(1/ν) und mit der Annahme, dass mi=νim, vereinfachen. Damit ist die Aktivität a=(νMνMνXνX)∙(±)νawν0, wobei ν die Anzahl der beim Auflösen gebildeten Ionen darstellt. Es ergibt sich der folgende Ausdruck:

Δp=νRT/Vm∙[ln(m/m0)+ln(γ±/γ±,0)+(ν0/ν)∙ln(aw/aw,0)] (Gl. 7).

Im Folgenden sollen die Einflussfaktoren und die einzelnen Terme der Gleichung näher betrachtet werden. Der erste Term in Klammern ist ein Ausdruck für die Übersättigung in Form der Konzentration. Der zweite und dritte Term in Klammern berücksichtigen das nicht-ideale Verhalten von konzentrierten Salzlösungen. Wird ideales Verhalten angenommen, entfällt zwar der zweite Term, da der mittlere Aktivitätskoeffizient dann 1 ist, der dritte Term jedoch bleibt. Die Wasseraktivität sinkt mit zunehmender Molalität und ist in Salzlösungen stets kleiner als in reinem Wasser. Da jedoch ν0, also die Zahl an Wassermolekülen, in den Term einfließt, entfällt er im Falle von wasserfreien Salzen. Neben ν0 wird in der Gleichung auch ν berücksichtigt und somit die Zusammensetzung eines Salzes aus mehreren Komponenten (die verschiedenen Ionen und gegebenenfalls Wasser). Wird das Kristallwasser vernachlässigt und damit der Term, der die Wasseraktivität beinhaltet, sind die Auswirkungen auf den berechneten Kristallisationsdruck nicht allzu groß ([Steiger:2005b]Title: Crystal growth in porous materials: II. The influence of crystal size
Author: Steiger, Michael
Link to Google Scholar
). Bei der Vernachlässigung der Ionen ist der Einfluss deutlich größer, da ν auch im Term vor der Klammer vorkommt. Damit ist die Anzahl der Ionen direkt proportional zum Kristallisationsdruck, welcher bei Vernachlässigung, je nach Art des Salzes, um den Faktor 2 oder mehr zu gering berechnet wird ([Steiger:2005b]Title: Crystal growth in porous materials: II. The influence of crystal size
Author: Steiger, Michael
Link to Google Scholar
, [Flatt.etal:2007]Title: A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure
Author: Flatt, Robert J.; Steiger, Michael; Scherer, George W.
Link to Google Scholar
, [Coussy:2006]The entry doesn't exist yet.). Bei einer Vernachlässigung des nicht-idealen Verhaltens ist der Einfluss auf den Kristallisationsdruck vom Salz abhängig und kann größer oder kleiner ausfallen. Mit zunehmender Übersättigung steigt der Aktivitätskoeffizient und damit auch der Druck und umgekehrt. Wenn ein Hydratsalz betrachtet wird, verringert andererseits der dann einfließende Term mit der Wasseraktivität den Druck, wodurch die Druckzunahme durch den Einfluss des Aktivitätskoeffizienten teilweise kompensiert wird ([Steiger:2005b]Title: Crystal growth in porous materials: II. The influence of crystal size
Author: Steiger, Michael
Link to Google Scholar
). Das molare Volumen des Salzes ist umgekehrt proportional zum Kristallisationsdruck. Das bedeutet, dass Salze mit einem geringen molaren Volumen bei gleichen Übersättigungen höhere Drücke erreichen als solche mit größeren molaren Volumina. Zu betonen ist hierbei, dass einige Salze keine hohen Übersättigungen erreichen können. [Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar

Bei dieser Betrachtung wird deutlich, dass Correns und Steinborn ([Correns.etal:1939]Title: Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft
Author: Correns, Carl W.; Steinborn, W.
Link to Google Scholar
) in ihrer Betrachtung das nicht-ideale Verhalten, aber vor allem die Zusammensetzung des Salzes vernachlässigt haben. Vor allem durch die nicht einfließende Anzahl an Ionen sind Kristallisationsdrücke zu klein berechnet worden ([Steiger:2005b]Title: Crystal growth in porous materials: II. The influence of crystal size
Author: Steiger, Michael
Link to Google Scholar
, [Flatt.etal:2007]Title: A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure
Author: Flatt, Robert J.; Steiger, Michael; Scherer, George W.
Link to Google Scholar
, [Coussy:2006]The entry doesn't exist yet.).

Crystallization in small pores[edit]

Bei kleinen Porengrößen muss auch der Einfluss der Kristallgröße auf ihre Löslichkeit berücksichtigt werden. Je kleiner die Kristallgröße, desto höher ist die Löslichkeit, so dass bei Kristallen in kleine Poren höhere Konzentrationen für ein Kristallwachstum erforderlich sind. Der Einfluss der Kristallgröße sphärischer Kristalle auf die Löslichkeit kann mit der folgenden Gleichung angegeben werden (Ostwald-Freundlich-Gleichung):

lna0/a=(2γclVm)/rRT (Gl. 8).

Darin sind a0 und a die thermodynamischen Löslichkeitsprodukte des kleinen beziehungsweise eines unendlich großen Kristalls, γcl die Grenzflächenenergie zwischen dem Kristall und der Lösung und r der Radius des Kristalls. [Steiger:2005b]Title: Crystal growth in porous materials: II. The influence of crystal size
Author: Steiger, Michael
Link to Google Scholar

Wird eine kugelförmige Pore mit kleinen zylindrischen Poreneingängen betrachtet, ergibt sich ein Modell für zwei verschieden große benachbarte Poren. Ist eine Lösung in Bezug auf den kleineren Kristall mit r1 (im Poreneingang) gesättigt, so ist sie in Bezug auf den größeren Kristall mit r2 (in der kugelförmigen Pore) übersättigt. Damit kann der größere Kristall weiterwachsen und Druck auf die Porenwand ausüben, bis das Gleichgewicht wieder erreicht ist. Da die für das Wachstum benötigte Konzentration an der freien Fläche (der kleine Kristall) größer ist als die am großen Kristall, ist das Wachstum nur unter Druckaufbau gegen die Porenwand möglich. Unter Anwendung der Gleichung für den Kristallisationsdruck mit der Sättigungsaktivität des großen Kristalls (anstelle der Aktivität der gesättigten Lösung) und der des kleinen Kristalls im Poreneingang (anstelle der Lösungsaktivität) und der zuletzt genannten Gleichung für die Löslichkeitsabhängigkeit, kann der folgende Ausdruck für die Berechnung des Kristallisationsdrucks erhalten werden:

p=2γcl∙[(1/r1)-(1/r2)] (Gl. 4).

Es ergibt sich die Gleichung von [Everett:1961]Title: The thermodynamics of frost damage to porous solids
Author: Everett, D.H.
Link to Google Scholar
. Everetts Gleichung ist also ein Sonderfall für eine bestimmte Geometrie, er bezieht sich aber auch auf einen Druckaufbau infolge von Übersättigung. Somit sind die Gleichungen von Correns und Everett ineinander überführbar und beschreiben im Falle der beschriebenen Geometrien den gleichen Schadensmechanismus und sind somit keineswegs widersprüchlich [Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar
. Im Falle der angegebenen Geometrie erhöht sich die Übersättigung mit abnehmendem Durchmesser des Poreneingangs. Für andere Geometrien können weitere Ausdrücke für den Kristallisationsdruck hergeleitet werden ([Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar
, [Scherer:1999]Title: Crystallization in pores
Author: Scherer, George W.
Link to Google Scholar
, [Flatt:2002]Title: Salt damage in porous materials: how high supersaturations are generated
Author: Flatt, Robert J.
Link to Google Scholar
, [Steiger:2006]Title: Crystal growth in porous materials: Influence of supersaturation and crystal size
Author: Steiger, Michael
Link to Google Scholar
.

Auch bei kleinen Poren gilt, dass Druck nur aufgebaut werden kann, wenn die Porenlösung in Bezug auf die freie Fläche beziehungsweise auf die relevante Fläche in unbelastetem Zustand übersättigt ist. Bei den kleinen Poren ist das die Konsequenz der unterschiedlichen Löslichkeiten durch die Krümmungen der Flächen. Je stärker die Krümmung, desto höher die Löslichkeit und desto höher die Übersättigungen an den anderen weniger gekrümmten Flächen, an denen Kristallwachstum stattfindet. In diesem Fall sind die Übersättigung und damit auch der Kristallisationsdruck ein Gleichgewichtszustand, so dass er auch über längere Zeiträume wirken kann. Dringend zu berücksichtigen ist aber, dass der Einfluss der Kristallgröße auf die Löslichkeit erst bei Radien <0.1 µm ([Steiger:2005]Title: Crystal growth in porous materials: I. The crystallization pressure of large crystals
Author: Steiger, Michael
Link to Google Scholar
) deutlich wird und für ausreichend hohe Drücke unter diesen Bedingungen Porendurchmesser <10-50 nm ([Steiger:2009]Title: Mechanismus der Schädigung durch Salzkristallisation
Author: Steiger, Michael
Link to Google Scholar
) vorliegen müssen, was nur bei den wenigsten Baustoffen der Fall ist. Im Falle von größeren Poren ist der Kristallisationsdruck kein Gleichgewichtszustand (s. oben). Dann ist es vorstellbar, dass bei langsamer werdender Verdunstung nur noch hochkonzentrierte Lösungen verbleiben, die nicht mit allen Kristallflächen in Kontakt stehen. Liegt nicht ausreichend Kontakt zu freien Flächen vor, so können Übersättigungen gegebenenfalls lange wirken, und Drücke länger aufrechterhalten werden ([Steiger:2005b]Title: Crystal growth in porous materials: II. The influence of crystal size
Author: Steiger, Michael
Link to Google Scholar
). Auch durch schnelle Verdunstung können hohe Übersättigungen aufgebaut werden. Wird die Ionendiffusion durch die Lösung im porösen System unterbrochen, kann das Wachstum an den belasteten Flächen die Folge sein, wenn die freien Flächen nicht mehr mit Lösung in Kontakt stehen ([Flatt:2002]Title: Salt damage in porous materials: how high supersaturations are generated
Author: Flatt, Robert J.
Link to Google Scholar
).

Sonderfall Hydratationsdruck[edit]

Einige Salze können in unterschiedlichen Hydratphasen vorliegen, beispielsweise verschiedene Phasen des Magnesiumsulfats (MgSO4nH2O). Durch den unterschiedlichen Wassergehalt in den Phasen ergibt sich ein für die jeweils höher hydratisierte Phase höheres molares Volumen, was lange Zeit für die Druckausübung auf das Porengefüge verantwortlich gemacht wurde (z.B.[Correns:1926]Title: Über die Erklärung der sogenannten Kristallisationskraft
Author: Correns, Carl W.
Link to Google Scholar
). Inzwischen werden zwei unterschiedliche Arten der Hydratationsreaktion unterschieden.

Zum einen kann eine Hydratation über Wasserdampf, also über die relative Luftfeuchte der Umgebung, erfolgen. Liegt der Wert der RH dabei unterhalb der Deliqueszenzfeuchte des geringeren Hydrats beziehungsweise der wasserfreien Phase, so geschieht die Hydratation über eine Festphasenreaktion. Für den dabei maximal durch das Wachstum eines Kristalls der hydratisierten Phase wirkenden Druck gegen die Porenwand kann die Gleichung für den Hydratationsdruck nach Mortensen [Mortensen:1933]Title: Die 'Salzprengung' und ihre Bedeutung für die regionalklimatische Gliederung der Wüsten
Author: Mortensen, Hans
Link to Google Scholar
verwendet werden (s.o.). Während bei der Kristallisation aus einer Lösung die Übersättigung der Lösung Triebkraft für den ausgeübten Druck ist, ist es bei der Hydratation über Wasserdampf (RH<DRH des niedrigeren Hydrats) die Übersättigung des Wasserdampfs der Umgebungsluft gegenüber des Gleichgewichtsdampfdrucks der Hydratphase bei der gegebenen Temperatur. Im Falle einer solchen Hydratation und der Verwendung der Gleichung nach Mortensen muss beachtet werden, dass es eine maximale relative Luftfeuchtigkeit gibt, oberhalb derer die Anwendung der Gleichung nicht mehr legitim ist. Überschreitet die relative Luftfeuchtigkeit die Deliqueszenzfeuchte der höheren Hydratphase, liegt nur noch eine Lösung vor, wodurch auch kein Hydratationsdruck wirken kann. [Steiger.etal:2014]Title: Weathering and Deterioration
Author: Steiger, Michael; Charola A. Elena; Sterflinger, Katja
Link to Google Scholar

Liegt die RH bei der Befeuchtung oberhalb der Deliqueszenzfeuchte der niedriger hydratisierten Phase, so erfolgt die Hydratation über einen anderen Mechanismus. Das geringere Hydrat bildet eine (gesättigte) Lösung, aus welcher die höher hydratisierte Phase auskristallisiert (Auflösungs- und Rekristallisationsvorgang). Auch hierbei ist nicht die Volumenzunahme Grund für den Druckaufbau im porösen Gefüge, sondern die Kristallisation der Hydratphase aus einer ihr gegenüber übersättigten Lösung. Somit stellt dieser Mechanismus einen Sonderfall des Kristallisationsdrucks in Folge der Kristallisation aus übersättigten Lösungen dar. Ebenfalls dieser Mechanismus ist bei einer Flüssigwasserbefeuchtung eines porösen Systems mit einer wasserfreien oder geringer hydratisierten Phase für den Druckaufbau verantwortlich. [Steiger:2003b]Title: Salts and Crusts
Author: Steiger, Michael
Link to Google Scholar

Beispielhaft lässt sich dies gut anhand des Systems Natriumsulfat-Wasser zeigen. Wird ein poröser Prüfkörper mit Thenardit im Porenraum bei Raumtemperatur getränkt, so bildet sich eine in Bezug auf Thenardit gesättigte Lösung. Ein Blick auf das Phasendiagramm des Systems zeigt jedoch, dass diese Lösung in Bezug auf Mirabilit übersättigt ist und der Grad der Übersättigung mit sinkender Temperatur zunimmt. Bei der Kristallisation von Mirabilit aus einer stark übersättigten Lösung können bei ausreichend gefüllten Poren hohe Drücke auf das Porengefüge wirken. Dies kann nicht nur bei der Flüssigwasserbefeuchtung beobachtet werden, sondern auch bei der Befeuchtung der wasserfreien bzw geringer hydratisierten Phase bei relativen Luftfeuchtigkeiten bis zur oder oberhalb der Deliqueszenzfeuchte, wobei die hydratisierte Phase dann aus dieser in Bezug auf sie übersättigten Lösung gebildet wird. Verallgemeinert ausgedrückt, kommt es durch das Auflösen einer metastabilen Phase zur Bildung einer in Hinblick auf die stabile Phase übersättigten Lösung, so dass während der Kristallisation der stabilen Phase hohe Drücke wirken können. [Steiger.etal:2008]Title: Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress
Author: Steiger, Michael; Asmussen, Sönke
Link to Google Scholar

Consideration of crystallization pressure within building deterioration[edit]

Schädigungen von realen Bauwerken aus porösem Material, hervorgerufen durch Salzkristallisation, werden häufig beobachtet. Die Salze beziehungsweise Salzlösungen in den porösen Materialien stehen im direkten Austausch mit der Umgebung. Somit können Schwankungen der relativen Luftfeuchtigkeit zu zyklischen Wechseln zwischen Kristallisation und Auflösung führen, wenn die Schwankungen in Bereichen ober- und unterhalb der Deliqueszenzfeuchte erfolgen. Auch der Eintrag von Regenwasser oder das Auftreten von Kondensation kann zur Befeuchtung oder Hydratation von vorliegenden Salzen führen. Einige Salze können auch bei alleinigen Temperaturschwankungen Phasenwechsel durchlaufen, wenn in dem Salzsystem Phasen vorliegen, die nur in einem bestimmten Temperaturbereich stabil sind (beispielsweise Mirabilit). An Bauwerken liegen aber in den meisten Fällen geringere Konzentrationen und weniger drastische Bedingungen vor als in den im Labor für die Untersuchung der Schädigungsmechanismen durchgeführten Experimenten.

Zudem gelten in Bezug auf den Kristallisationsdruck die bereits im Abschnitt „Vertiefung“ erwähnten Punkte. Kleine Poren, die für einen Kristallisationsdruck als Gleichgewichtszustand notwendig sind, liegen in den meisten Baumaterialien nicht vor, sind aber in Zement möglich. Demnach ist der schädigende Kristallisationsdruck an realen Objekten in der Regel kein Gleichgewichtszustand, sondern ein dynamischer Prozess ([Steiger:2009]Title: Mechanismus der Schädigung durch Salzkristallisation
Author: Steiger, Michael
Link to Google Scholar
, [Scherer:2004]Title: Stress from crystallization of salt
Author: Scherer, George W.
Link to Google Scholar
. Die hohen Übersättigungen liegen dann nur über kurze Zeiträume vor und werden durch die Kristallisation an freien Flächen abgebaut.

Literature[edit]

[Becker.etal:1916]Becker, G.F.; Day, A.L. (1916): Notes on the Linear Force of Growing Crystals. In: Journal of Geology, 24 (4), 313-333, UrlLink to Google Scholar
[Bruhns.etal:1913]Bruhns, W.; Mecklenburg, W. (1913): Über die sogenannte "Kristallisationskraft". In: Sechster Jahresbericht des Niedersächsischen Geologischen Vereins zu Hannover, (), 92-115Link to Google Scholar
[Buil:1983]Buil, Michel (1983): Thermodynamics and Experimental Study of the Crystallization Pressure of Water Soluble Salts. In: F.H. Wittmann (eds.): Materials Science and Restoration, Lack und Chemie, Filderstadt, 373-377.Link to Google Scholar
[Correns.etal:1939]Correns, Carl W.; Steinborn, W. (1939): Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft. In: Zeitschrift für Kristallografie, (101), 117-133Link to Google Scholar
[Correns:1926]Correns, Carl W. (1926): Über die Erklärung der sogenannten Kristallisationskraft. In:: Preuss. Akad. der Wissensch, Sitzungsband, de Gruyter, 81-88.Link to Google Scholar
[Coussy:2006]The entry doesn't exist yet.
[Desarnaud.etal:2016]The entry doesn't exist yet.
[Duttlinger.etal:1993]Duttlinger, Werner; Knöfel, Dietbert (1993): Salzkristallisation und Salzschadensmechanismen. In: Snethlage, Rolf (eds.): Jahresberichte Steinzerfall - Steinkonservierung 1991, Ernst & Sohn, (Berlin), 197-213.Link to Google Scholar
[Espinosa-Marzal.etal:2010]Espinosa-Marzal, Rosa M.; Scherer, George W. (2010): Advances in Understanding Damage by Salt Crystallization. In: Accounts of Chemical Research, 43 (6), 897-905, UrlLink to Google Scholar
[Everett:1961]Everett, D.H. (1961): The thermodynamics of frost damage to porous solids. In: Transactions of the Faraday Society, 57 (), 1541-1551Link to Google Scholar
[Flatt.etal:2007]Flatt, Robert J.; Steiger, Michael; Scherer, George W. (2007): A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. In: Environmental Geology, 52 (2), 187-203, 10.1007/s00254-006-0509-5Link to Google Scholar
[Flatt:2002]Flatt, Robert J. (2002): Salt damage in porous materials: how high supersaturations are generated. In: Journal of Crystal Growth, 242 (3), 435-454Link to Google Scholar
[Goranson:1940]The entry doesn't exist yet.
[Hall.etal:1984]The entry doesn't exist yet.
[Mortensen:1933]Mortensen, Hans (1933): Die 'Salzprengung' und ihre Bedeutung für die regionalklimatische Gliederung der Wüsten. In::, Justus Perthes, 130-135.Link to Google Scholar
[Scherer:1999]Scherer, George W. (1999): Crystallization in pores. In: Cement and Concrete Research, 29 (), 1347-1358Link to Google Scholar
[Scherer:2004]Scherer, George W. (2004): Stress from crystallization of salt. In: Cement and Concrete Research, 34 (4), 1613–1624, UrlLink to Google Scholar
[Steiger.etal:2008]Steiger, Michael; Asmussen, Sönke (2008): Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress. In: Geochimica et Cosmochimica Acta, 72 (17), 4291-4306, UrlLink to Google Scholar
[Steiger.etal:2014]Steiger, Michael; Charola A. Elena; Sterflinger, Katja (2014): Weathering and Deterioration. In: Siegesmund S.; Snethlage R. (eds.): Stone in Architecture, Springer Verlag Berlin Heidelberg, 223-316, 10.1007/978-3-642-45155-3_4.Link to Google Scholar
[Steiger:2003b]Steiger, Michael (2003): Salts and Crusts. In: Brimblecomb, Peter (eds.): Air Pollution Reviews – Vol. 2: The effect of air pollution on the Built Environment, Imperial College Press, 133-181.Link to Google Scholar
[Steiger:2005]Steiger, Michael (2005): Crystal growth in porous materials: I. The crystallization pressure of large crystals. In: journal of Crystal Growth, 282 (3), 455-469, Url, 10.1016/j.jcrysgro.2005.05.007Link to Google Scholar
[Steiger:2005b]Steiger, Michael (2005): Crystal growth in porous materials: II. The influence of crystal size. In: Journal of Crystal Growth, 282 (3), 470-481, 10.1016/j.jcrysgro.2005.05.008Link to Google Scholar
[Steiger:2006]Steiger, Michael (2006): Crystal growth in porous materials: Influence of supersaturation and crystal size. In: Fort, Rafael; Alvarez de Buergo, Monica; Gomez-Heras, Miquel; Vazquez-Calvo, Carmen (eds.): Heritage, Weathering and Conservation: Proceedings of the International Heritage, Weathering and Conservation Conference (HWC-2006), 21-24 June 2006, Madrid, Spain, Taylor & Francis, 245-251.Link to Google Scholar
[Steiger:2009]Steiger, Michael (2009): Mechanismus der Schädigung durch Salzkristallisation. In: Schwarz, Hans-Jürgen; Steiger, Michael (eds.): Salzschäden an Kulturgütern: Stand des Wissens und Forschungsdefizite, Eigenverlag, 66-80.Link to Google ScholarFulltext link
[Taber:1916]Taber, Stephen (1916): The Growth of Crystals under External Pressure. In: American Journal of Science, (41), 532-556Link to Google Scholar
[Weyl:1959]Weyl, Peter K. (1959): Pressure Solution and the Force of Crystallisation - A Phenomenological Theory. In: Journal of Geophysical Research, 64 (11), 2001-2025Link to Google Scholar