Modeling of Salt and Humidity Transport: Difference between revisions
Line 142: | Line 142: | ||
== Energy balance equation == | == Energy balance equation == | ||
The equation for the energy stored in a salt-free porous materials is | The equation for the energy stored in a salt-free porous materials is | ||
<math>\frac{\partial \rho^U }{\partial t} &= - \nabla \left( j^Q + h_w j^{m_{w}} + h_v j^{m_{v}}_{dif\!f} + h_v j^{m_{v}}_{conv} \right)</math> | |||
\frac{\partial \rho^U }{\partial t} &= - \nabla \left( j^Q + h_w j^{m_{w}} + h_v j^{m_{v}}_{dif\!f} + h_v j^{m_{v}}_{conv} \right) | |||
</math> | |||
No expanding or reducing terms for the phase change enthalpy are given in the energy equation. The change enthalpies are considered in the energy density (see paragraph above). | No expanding or reducing terms for the phase change enthalpy are given in the energy equation. The change enthalpies are considered in the energy density (see paragraph above). | ||
The enthalpy of dry air <math>h_a \rho^{m_a}</math> (dry air = all gas phase components except water vapor) is much smaller than the enthalpy of water vapor so that it is commonly neglected. The energy equation can be expanded accordingly in specific applications (e.g. compressed air drying of porous materials). In typical application scenarios the speed of air currents in porous substances can be neglected so that <math>h_v j^{m_{v}}_{conv} </math> can also be disregarded. | The enthalpy of dry air <math>h_a \rho^{m_a}</math> (dry air = all gas phase components except water vapor) is much smaller than the enthalpy of water vapor so that it is commonly neglected. The energy equation can be expanded accordingly in specific applications (e.g. compressed air drying of porous materials). In typical application scenarios the speed of air currents in porous substances can be neglected so that <math>h_v j^{m_{v}}_{conv} </math> can also be disregarded. | ||
= Modeling of salt transport = | = Modeling of salt transport = |
Revision as of 04:01, 21 October 2011
Error creating thumbnail: File missing The English version of this article is being translated by Christa Gerdwilker. Error creating thumbnail: File missing
|
<bibimport/>
Author: Dr. Andreas Nicolai
back to Saltwiki:Community portal
Linked Article
Introduction[edit]
The transport of salts in porous materials (building materials, stone, flooring etc.)is dependent on many factors. The types of salts, their constituents and distribution, the extent of dampness, temperature, environmental conditions in general and also the microscopic structure of the material all influence the movement of salts and the appearance of decay over time.
Usually, only specific combinations of materials, salt mixtures and environmental conditions can be measured under laboratory conditions (common laboratory experiments for the determination of salt transport properties can be found in the article "Experimental calibration of salt transport parameters". Due to diverse parameters and decay scenarios it is rarely possible to directly apply such imperial measurements in the practical environment.
Alternatively, transport models can be used which realistically simulate the physical and chemical context and thus allow mathematical predictions regarding the dispersion and accumulation of salts and material decay over time. The aim of this article and linked reference material is to provide a summary of current research in the modeling of salt transport.
Due to insufficient nomenclature in relevant norms and literature, a bespoke form of annotation and symbols for salt transport models Annotation and list of symbols used for salt transport models is used for the models below.
Fundamental aspects of modeling salt transport[edit]
Due to the complexity of the involved processes, salt transport models must be able to describe a number of effects, amongst others:
- Moisture transport and moisture retention
- Thermal transfer through thermal conductivity and radiation
- Enthalpy transport, e.g. latent heat to describe cooling during evaporation
- Balanced salt phase change constituents and phase change kinetics
- Salt diffusion and dispersion
- Efflorescence (removal of salts from the calculated domain)
- Change of pore space through crystallization and resultant effect on moisture and salt transport
Because the linked thermal and moisture transport models form the basis for salt transport modeling, a summary of the current state of research in moisture transport modeling is provided. Generally, the presented model corresponds to the jointly defined transport model [Hagentoft.etal:2004]Title: Assessment Method of Numerical Prediction Models for Combined Heat, Air and Moisture Transfer in Building Components: Benchmarks for One-dimensional Cases
Author: Hagentoft, Carl-Eric; Kalagasidis, Angela Sasic; Adl-Zarrabi, Bijan; Roels, Staf; Carmeliet, Jan; Hens ,Hugo; Grunewald, John; Max Funk; Rachel Becker; Dina Shamir; Olaf Adan; Harold Brocken; Kumar Kumaran; Reda Djebbar
of the HAMSTAD Projekt.
Moisture transport modeling[edit]
Water is the transport medium for salts. In dry material salt is immobile. Only the mobilization of salts through penetrating moisture and enrichment of salts during evaporation of water in a different area of porous masonry results in decay. Subsequently a detailed moisture transport model is a primary pre-requisite for every salt transport model.
Moisture transport models describe the different transport processes of moisture in a porous medium as well as the retention of moisture and subsequently the interrelation between the material conditions (moisture content and mass) and the intrinsically thermo-dynamic environmental conditions (capillary pressure, relative humidity, etc.).
Fundamental moisture transport mechanisms in damp masonry[edit]
Building materials, stone and generally porous materials can absorb moisture in vapor and liquid form. Accordingly the transport mechanisms for liquid water and vapor are differentiated:
- Water vapor diffusion
- Convection of vapor in air currents
- Liquid water flow induced by differential water pressure
These transport mechanisms are described in the article "Moisture transport mechanisms".
Correlation between driving forces and moisture content[edit]
The correlation between a volume or mass based amount of e.g. moisture content and the intrinsic (and therefore volume independent) amount of relative humidity or capillary pressure are created by the moisture retention capacity. This is differentiated into
- The sorption isotherm and
- The moisture retention capacity (MRC)
The sorption isotherm is commonly defined for standard conditions and with that, constant temperature (hence the term isotherm) and establishes the correlation between moisture content and relative humidity . The moisture retention capacity establishes the correlation between the moisture content and capillary pressure .
The moisture content can be measured as moisture mass over volume of material i.e. as moisture mass density or as water volume over material volume i.e. the moisture content .
Relative humidity and capillary pressure are interrelated (in saltfree! material) which is expressed in the Kelvin equation
The capillary pressure is defined as negative pressure in contrast to tension caused by suction which is defined as negative capillary pressure.
The article "Moisture retention in porous materials" further elaborates on this interrelation.
Phase-changing processes (without salt)[edit]
Even without the presence of salt in porous materials the following phase changes within the pore system need to be considered:
- Evaporation
- Condensation,
- Freeze
- Thaw
The related phase change enthalpies are always of critical issue here.
The article "Modeling of the phase changes between ice, water and vapor" discusses the common approaches to linked hygro-thermal transport models.
Balance equations[edit]
Following the discussion and illustration of the individual processes involved in moisture transport and retention, these can be summarized in the equations below.
The general equation for moisture and ice mass (for the kinetic description of ice formation) is
Failed to parse (syntax error): {\displaystyle \frac{\partial \rho^{m_{w+v}} }{\partial t} &= - \nabla \left( j^{m_{w}} + j^{m_{v}}_{dif\!f} + j^{m_{v}}_{conv} \right) - \sigma_{w \rightarrow \text{ice}}}
Failed to parse (syntax error): {\displaystyle \frac{\partial \rho^{m_{\text{ice}}} }{\partial t} &= \sigma_{w \rightarrow \text{ice}}}
The second part of the balance equation and phase change term can be ignored if the crystallization of ice is not of interest. The use of the term ‘isothermal process’ to describe moisture transport is rarely sufficient. It is not applicable where cooling during evaporation and warming during condensation form substantial processes in practice. Therefore, the moisture mass balance equation is complemented by the energy balance equation.
Thermal conductivity, thermal transfer and energy equation[edit]
Heat retention[edit]
Heat retention is differentiated into:
- Sensible heat i.e. heat which is stored in the kinetic energy caused by atom vibration or the movement energy of molecules
Every material has a specific thermal capacity, which together with density and temperature changes, result in changes to the stored sensitive heat: - latent Wärme, i.e. phase change enthalpies
Latent heat is commonly defined in relation to the state of aggregate e.g. the liquid aggregate state of water. During heating above boiling point steam absorbs latent heat which is released again during condensation. Analogously, latent heat is released during freezing which has to be re-introduced during the melting of ice. Latent heat is several magnitudes bigger than sensible heat. - Chemically bound heat
This energy is balanced in reaction equations e.g. during the crystallization or solution of salts.
The stored energies can be summarized in relation to the reference temperature and produce, in the case of a salt free material, the energy density difference :
Failed to parse (syntax error): {\displaystyle \rho^U - \rho^{U_{Ref}} = \rho_b c_T \left(T - T_{Ref} \right) \\ + \quad \quad \rho^{m_v} \left[ c_{T,v} \left(T - T_{Ref} \right) + h_v\right] \\ + \quad \quad \rho^{m_w} c_{T,w} \left(T - T_{Ref} \right) \\ + \quad \quad \rho^{m_\text{ice}} \left[ c_{T,\text{ice}} \left(T - T_{Ref} \right) - h_{\text{ice}} \right] }
Simplified, the energy density can be seen as a differential value and, therefore, an explicit specification of the reference temperature can be omitted.
The reference phase here is the liquid phase, so that phase change enthalpy is added to the steam and the relevant enthalpy is deducted from ice. The first term of the added energy density is the energy stored within the material matrix.
Illustrative example[edit]
The following mental experiment can be conducted during consideration of the equation for energy density:
- The control volume is adiabatic so that the energy density is constant
- Water is to evaporate so that , which results in a smaller liquid density and a larger vapor mass density.
- If the energy density equation is now adjusted for temperature, a lower temperature than before is obtained; this cooling through evaporation corresponds with our expectations.
Thermal transfer mechanisms[edit]
Different mechanisms of thermal transfer are considered:
- Thermal conductivity
- Thermal transfer through short-/ long-wave radiation (short-wave radiation is only of significance during the description of frame conditions whereas long wave radiation is important within constructions e.g. inside buildings).
- Convection of latent and sensible heat
The article "Mechanisms of thermal transfer" discusses models for the different thermal transfer mechanisms, in particular thermal conductivity and enthalpy transport of the different components.
Energy balance equation[edit]
The equation for the energy stored in a salt-free porous materials is Failed to parse (syntax error): {\displaystyle \frac{\partial \rho^U }{\partial t} &= - \nabla \left( j^Q + h_w j^{m_{w}} + h_v j^{m_{v}}_{dif\!f} + h_v j^{m_{v}}_{conv} \right)}
No expanding or reducing terms for the phase change enthalpy are given in the energy equation. The change enthalpies are considered in the energy density (see paragraph above).
The enthalpy of dry air (dry air = all gas phase components except water vapor) is much smaller than the enthalpy of water vapor so that it is commonly neglected. The energy equation can be expanded accordingly in specific applications (e.g. compressed air drying of porous materials). In typical application scenarios the speed of air currents in porous substances can be neglected so that can also be disregarded.
Modeling of salt transport[edit]
The previously described modeling approaches and equations initially apply to salt-free materials with the added restriction of a non-variable material structure. If salts are also to be considered, several influential factors will need to be integrated into the model.
Transport mechanisms for salts/ions and modeling approaches[edit]
Generally, salts can only be transported within building materials in the presence of liquid phase i.e. capillary water. This transport happens through diffusion or convection.
- Diffusion describes the (mass-centric) exchange of ions
- Convection describes the transport of dissolved salts together with the liquid phase
During the convection of a salt solution through porous material, different current paths through the pore network can result in higher salt concentrations fronts "forging ahead" or "lagging behind" in some areas. The observed spread of a concentration front, similar to a diffusion process, is termed dispersion. The effect of dispersion and diffusion is similar and difficult to differentiate in the presence of convection. In still liquids only diffusion will take place.
Phase changes[edit]
- Crystallization and solution
- Hydration and dehydration
- Deliquescence
The detailed description of the phase changing models is shown in the article "Modeling of the phase change reaction of salts ".
Influence of salts on moisture retention[edit]
To describe:
- Increased hygroscopic moisture absorption in the presence of salt loads
- Reduction in vapor pressure, water activity
- Surface tension + Kelvin-equation
Influence of salts on moisture transport[edit]
- Viscosity
- Influence on density/gravitational forces
Crystallization within and outwith the pore network[edit]
- Decrease in pore space due to crystallization, resultant effect on reservoir capacity and transport mechanisms
- Efflorescence-Models
Literature[edit]
Note: The listed literature is still to be shown and reviewed
[Koniorczyk.etal:2008]Title: Heat and Moisture Transport in Porous Building Materials Containing Salt
Author: Koniorczyk, Marcin; Gawin, Dariusz
[Filter missing]